ekore.harmonics package

Module containing the harmonics sums implementation.

Definitions are coming from [Blu00, Blu09, Mus17].

Submodules

ekore.harmonics.cache module

Caching harmonic sums across ekore.

ekore.harmonics.cache.reset()[source]

Return the cache placeholder array.

ekore.harmonics.cache.update(func, key, cache, n)[source]

Compute simple harmonics if not yet in cache.

ekore.harmonics.cache.update_Sm1(cache, n, is_singlet)[source]

Compute Sm1 if not yet in cache.

ekore.harmonics.cache.update_Sm2(cache, n, is_singlet)[source]

Compute Sm2 if not yet in cache.

ekore.harmonics.cache.get(key: int, cache: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], n: complex, is_singlet: bool | None = None) complex[source]

Retrieve an element of the cache.

Parameters:
  • key – harmonic sum key

  • cache – cache list holding all elements

  • n – complex evaluation point

  • is_singlet – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

requested harmonic sum evaluated at n

Return type:

complex

ekore.harmonics.g_functions module

Auxilary functions for harmonics sums of weight = 3,4.

Implementations of some Mellin transformations \(g_k(N)\) [Mus17] appearing in the analytic continuation of harmonics sums of weight = 3,4.

ekore.harmonics.g_functions.mellin_g3(N, S1)[source]

Compute the Mellin transform of \(\text{Li}_2(x)/(1+x)\).

This function appears in the analytic continuation of the harmonic sum \(S_{-2,1}(N)\) which in turn appears in the NLO anomalous dimension (see Harmonic Sums).

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

Returns:

mellin_g3 – approximate Mellin transform \(\mathcal{M}[\text{Li}_2(x)/(1+x)](N)\)

Return type:

complex

Note

We use the name from [Mus17], but not his implementation - rather we use the Pegasus [Vog05] implementation.

ekore.harmonics.g_functions.mellin_g4(N)[source]

Compute the Mellin transform of \(\text{Li}_2(-x)/(1+x)\).

Implementation and definition in B.5.25 of [Mus17] or in 61 of [Blu00], but none of them is fully correct.

Parameters:

N (complex) – Mellin moment

Returns:

mellin_g4 – Mellin transform \(\mathcal{M}[\text{Li}_2(-x)/(1+x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g5(N, S1, S2)[source]

Compute the Mellin transform of \((\text{Li}_2(x)ln(x))/(1+x)\).

Implementation and definition in B.5.26 of [Mus17] or in 62 of [Blu00], but none of them is fully correct.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

mellin_g5 – Mellin transform \(\mathcal{M}[(\text{Li}_2(x)ln(x))/(1+x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g6(N, S1)[source]

Compute the Mellin transform of \(\text{Li}_3(x)/(1+x)\).

Implementation and definition in B.5.27 of [Mus17] or in 63 of [Blu00], but none of them is fully correct.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

Returns:

mellin_g6 – Mellin transform \(\mathcal{M}[\text{Li}_3(x)/(1+x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g8(N, S1, S2)[source]

Compute the Mellin transform of \(S_{1,2}(x)/(1+x)\).

Implementation and definition in B.5.29 of [Mus17] or in 65 of [Blu00], but none of them is fully correct.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

mellin_g8 – Mellin transform \(\mathcal{M}[S_{1,2}(x)/(1+x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g18(N, S1, S2)[source]

Compute the Mellin transform of \(-(\text{Li}_2(x) - \zeta_2)/(1-x)\).

Implementation and definition in 124 of [Blu00]

Note: comparing to [Blu00], we believe [Mus17] was not changing the notations of \(P^{(1)}_{2}\) to \(P^{(1)}_{1}\). So we implement eq 124 of [Blu00] but using [Mus17] notation.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

mellin_g18 – Mellin transform \(\mathcal{M}[-(\text{Li}_2(x) - \zeta_2)/(1-x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g19(N, S1)[source]

Compute the Mellin transform of \(-(\text{Li}_2(-x) + \zeta_2/2)/(1-x)\).

Implementation and definition in B.5.40 of [Mus17] or in 125 of [Blu00], but none of them is fully correct.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

Returns:

mellin_g19 – Mellin transform \(\mathcal{M}[-(\text{Li}_2(-x) + \zeta_2/2)/(1-x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g21(N, S1, S2, S3)[source]

Compute the Mellin transform of \(-(S_{1,2}(x) - \zeta_3)/(1-x)\).

Implementation and definition in B.5.42 of [Mus17].

Note: comparing to [Blu00], we believe [Mus17] was not changing the notations of \(P^{(3)}_{2}\) to \(P^{(3)}_{1}\) and \(P^{(3)}_{3}\) to \(P^{(3)}_{2}\). So we implement 127 of [Blu00] but using [Mus17] notation.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

Returns:

mellin_g21 – Mellin transform \(\mathcal{M}[-(S_{1,2}(x) - \zeta_3)/(1-x)](N)\)

Return type:

complex

ekore.harmonics.g_functions.mellin_g22(N, S1, S2, S3)[source]

Compute the Mellin transform of \(-(\text{Li}_2(x) ln(x))/(1-x)\).

Implementation and definition in B.5.43 of [Mus17].

Note: comparing to [Blu00], we believe [Mus17] was not changing the notations of \(P^{(1)}_{2}\) to \(P^{(1)}_{1}\) So we implement 128 of [Blu00] but using [Mus17] notation.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

Returns:

mellin_g22 – Mellin transform \(\mathcal{M}[-(\text{Li}_2(x) ln(x))/(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions module

Implementation of Mellin transformation of logarithms.

We provide transforms of:

  • \((1-x)\ln^k(1-x), \quad k = 1,2,3\)

  • \(\ln^k(1-x), \quad k = 1,3,4,5\)

ekore.harmonics.log_functions.lm11m1(n, S1)[source]

Mellin transform of \((1-x)\ln(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

Returns:

\(\mathcal{M}[(1-x)\ln(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm12m1(n, S1, S2)[source]

Mellin transform of \((1-x)\ln^2(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

\(\mathcal{M}[(1-x)\ln^2(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm13m1(n, S1, S2, S3)[source]

Mellin transform of \((1-x)\ln^3(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

Returns:

\(\mathcal{M}[(1-x)\ln^3(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm14m1(n, S1, S2, S3, S4)[source]

Mellin transform of \((1-x)\ln^4(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

  • S4 (complex) – Harmonic sum \(S_{4}(N)\)

Returns:

\(\mathcal{M}[(1-x)\ln^4(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm15m1(n, S1, S2, S3, S4, S5)[source]

Mellin transform of \((1-x)\ln^5(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

  • S4 (complex) – Harmonic sum \(S_{4}(N)\)

  • S5 (complex) – Harmonic sum \(S_{5}(N)\)

Returns:

\(\mathcal{M}[(1-x)\ln^5(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm11(n, S1)[source]

Mellin transform of \(\ln(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

Returns:

\(\mathcal{M}[\ln(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm12(n, S1, S2)[source]

Mellin transform of \(\ln^2(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

\(\mathcal{M}[\ln^2(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm13(n, S1, S2, S3)[source]

Mellin transform of \(\ln^3(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

Returns:

\(\mathcal{M}[\ln^3(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm14(n, S1, S2, S3, S4)[source]

Mellin transform of \(\ln^4(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

  • S4 (complex) – Harmonic sum \(S_{4}(N)\)

Returns:

\(\mathcal{M}[\ln^4(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm15(n, S1, S2, S3, S4, S5)[source]

Mellin transform of \(\ln^5(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

  • S4 (complex) – Harmonic sum \(S_{4}(N)\)

  • S5 (complex) – Harmonic sum \(S_{5}(N)\)

Returns:

\(\mathcal{M}[\ln^5(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm11m2(n, S1)[source]

Mellin transform of \((1-x)^2\ln(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

Returns:

\(\mathcal{M}[(1-x)^2\ln(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm12m2(n, S1, S2)[source]

Mellin transform of \((1-x)^2\ln^2(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

\(\mathcal{M}[(1-x)^2\ln^2(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm13m2(n, S1, S2, S3)[source]

Mellin transform of \((1-x)^2\ln^3(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

Returns:

\(\mathcal{M}[(1-x)^2\ln^3(1-x)](N)\)

Return type:

complex

ekore.harmonics.log_functions.lm14m2(n, S1, S2, S3, S4)[source]

Mellin transform of \((1-x)^2\ln^4(1-x)\).

Parameters:
  • n (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

  • S4 (complex) – Harmonic sum \(S_{4}(N)\)

Returns:

\(\mathcal{M}[(1-x)^2\ln^4(1-x)](N)\)

Return type:

complex

ekore.harmonics.polygamma module

Polygamma and harmonic sums implementation.

The functions are described in Mellin space.

ekore.harmonics.polygamma.cern_polygamma(Z, K)[source]

Compute the polygamma functions \(\psi_k(z)\).

Reimplementation of WPSIPG (C317) in CERNlib [Kol72].

Note that the SciPy implementation scipy.special.digamma does not allow for complex inputs.

Parameters:
  • Z (complex) – argument of polygamma function

  • K (int) – order of polygamma function

Returns:

H – k-th polygamma function \(\psi_k(z)\)

Return type:

complex

ekore.harmonics.polygamma.recursive_harmonic_sum(base_value, n, iterations, weight)[source]

Recursive computation of harmonic sums.

Compute the harmonic sum \(S_{w}(N+k)\) stating from the value \(S_{w}(N)\) via the recurrence relations.

Parameters:
  • base_value (complex) – starting value \(S_{w}(N)\)

  • n (complex) – starting point

  • iterations (int) – number of iterations

  • weight (int) – harmonic sum weight

Returns:

sni\(S_{w}(N+k)\)

Return type:

complex

ekore.harmonics.polygamma.symmetry_factor(N, is_singlet=None)[source]

Compute the analytical continuation of \((-1)^N\).

Parameters:
  • N (complex) – Mellin moment

  • is_singlet (bool, None) – True for singlet like quantities False for non-singlet like quantities None for generic complex N value

Returns:

eta – 1 for singlet like quantities, -1 for non-singlet like quantities, \((-1)^N\) elsewise

Return type:

complex

ekore.harmonics.w1 module

Weight 1 harmonic sums.

ekore.harmonics.w1.S1(N)[source]

Compute the harmonic sum \(S_1(N)\).

\[S_1(N) = \sum\limits_{j=1}^N \frac 1 j = \psi_0(N+1)+\gamma_E\]

with \(\psi_0(N)\) the digamma function and \(\gamma_E\) the Euler-Mascheroni constant.

Parameters:

N (complex) – Mellin moment

Returns:

S_1 – (simple) Harmonic sum \(S_1(N)\)

Return type:

complex

ekore.harmonics.w1.Sm1(N, hS1, hS1mh, hS1h, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-1}(N)\).

\[S_{-1}(N) = \sum\limits_{j=1}^N \frac {(-1)^j} j\]
Parameters:
  • N (complex) – Mellin moment

  • hS1 (complex) – Harmonic sum \(S_{1}(N)\)

  • hS1mh (complex) – Harmonic sum \(S_{1}((N-1)/2)\)

  • hS1h (complex) – Harmonic sum \(S_{1}(N/2)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm1 – Harmonic sum \(S_{-1}(N)\)

Return type:

complex

See also

eko.anomalous_dimension.w1.S1

\(S_1(N)\)

ekore.harmonics.w2 module

Weight 2 harmonic sums.

ekore.harmonics.w2.S2(N)[source]

Compute the harmonic sum \(S_2(N)\).

\[S_2(N) = \sum\limits_{j=1}^N \frac 1 {j^2} = -\psi_1(N+1)+\zeta(2)\]

with \(\psi_1(N)\) the trigamma function and \(\zeta\) the Riemann zeta function.

Parameters:

N (complex) – Mellin moment

Returns:

S_2 – Harmonic sum \(S_2(N)\)

Return type:

complex

ekore.harmonics.w2.Sm2(N, hS2, hS2mh, hS2h, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-2}(N)\).

\[S_{-2}(N) = \sum\limits_{j=1}^N \frac {(-1)^j}{j^2}\]
Parameters:
  • N (complex) – Mellin moment

  • hS2 (complex) – Harmonic sum \(S_{2}(N)\)

  • hS2mh (complex) – Harmonic sum \(S_{2}((N-1)/2)\)

  • hS2h (complex) – Harmonic sum \(S_{2}(N/2)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm2 – Harmonic sum \(S_{-2}(N)\)

Return type:

complex

See also

eko.anomalous_dimension.w2.S2

\(S_2(N)\)

ekore.harmonics.w3 module

Weight 3 harmonic sums.

ekore.harmonics.w3.S3(N)[source]

Compute the harmonic sum \(S_3(N)\).

\[S_3(N) = \sum\limits_{j=1}^N \frac 1 {j^3} = \frac 1 2 \psi_2(N+1)+\zeta(3)\]

with \(\psi_2(N)\) the 2nd-polygamma function and \(\zeta\) the Riemann zeta function.

Parameters:

N (complex) – Mellin moment

Returns:

S_3 – Harmonic sum \(S_3(N)\)

Return type:

complex

ekore.harmonics.w3.Sm3(N, hS3, hS3mh, hS3h, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-3}(N)\).

\[S_{-3}(N) = \sum\limits_{j=1}^N \frac {(-1)^j} {j^3}\]
Parameters:
  • N (complex) – Mellin moment

  • hS3 (complex) – Harmonic sum \(S_{3}(N)\)

  • hS3mh (complex) – Harmonic sum \(S_{3}((N-1)/2)\)

  • hS3h (complex) – Harmonic sum \(S_{3}(N/2)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm3 – Harmonic sum \(S_{-3}(N)\)

Return type:

complex

See also

ekore.harmonics.w3.S3

\(S_3(N)\)

ekore.harmonics.w3.S21(N, S1, S2)[source]

Analytic continuation of harmonic sum \(S_{2,1}(N)\).

As implemented in B.5.77 of [Mus17] and 37 of [Blu00].

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

Returns:

S21 – Harmonic sum \(S_{2,1}(N)\)

Return type:

complex

ekore.harmonics.w3.Sm21(N, S1, Sm1, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-2,1}(N)\).

As implemented in B.5.75 of [Mus17] and 22 of [Blu00].

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • Sm1 (complex) – Harmonic sum \(S_{-1}(N)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm21 – Harmonic sum \(S_{-2,1}(N)\)

Return type:

complex

ekore.harmonics.w3.S2m1(N, S2, Sm1, Sm2, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{2,-1}(N)\).

As implemented in B.5.76 of [Mus17] and 23 of [Blu00].

Parameters:
  • N (complex) – Mellin moment

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • Sm1 (complex) – Harmonic sum \(S_{-1}(N)\)

  • Sm2 (complex) – Harmonic sum \(S_{-2}(N)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

S2m1 – Harmonic sum \(S_{2,-1}(N)\)

Return type:

complex

ekore.harmonics.w3.Sm2m1(N, S1, S2, Sm2)[source]

Analytic continuation of harmonic sum \(S_{-2,-1}(N)\).

As implemented in B.5.74 of [Mus17] and 38 of [Blu00].

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • Sm2 (complex) – Harmonic sum \(S_{-2}(N)\)

Returns:

Sm2m1 – Harmonic sum \(S_{-2,-1}(N)\)

Return type:

complex

ekore.harmonics.w4 module

Weight 4 harmonic sums.

ekore.harmonics.w4.S4(N)[source]

Compute the harmonic sum \(S_4(N)\).

\[S_4(N) = \sum\limits_{j=1}^N \frac 1 {j^4} = - \frac 1 6 \psi_3(N+1)+\zeta(4)\]

with \(\psi_3(N)\) the 3rd-polygamma function and \(\zeta\) the Riemann zeta function.

Parameters:

N (complex) – Mellin moment

Returns:

S_4 – Harmonic sum \(S_4(N)\)

Return type:

complex

ekore.harmonics.w4.Sm4(N, hS4, hS4mh, hS4h, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-4}(N)\).

\[S_{-4}(N) = \sum\limits_{j=1}^N \frac {(-1)^j} {j^4}\]
Parameters:
  • N (complex) – Mellin moment

  • hS4 (complex) – Harmonic sum \(S_{4}(N)\)

  • hS4mh (complex) – Harmonic sum \(S_{4}((N-1)/2)\)

  • hS4h (complex) – Harmonic sum \(S_{4}(N/2)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm4 – Harmonic sum \(S_{-4}(N)\)

Return type:

complex

See also

eko.anomalous_dimension.w4.S4

\(S_4(N)\)

ekore.harmonics.w4.Sm31(N, S1, Sm1, Sm2, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-3,1}(N)\).

As implemented in B.5.93 of [Mus17] and 25 of cite:Bl_mlein_2000.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • Sm1 (complex) – Harmonic sum \(S_{-1}(N)\)

  • Sm2 (complex) – Harmonic sum \(S_{-2}(N)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm31 – Harmonic sum \(S_{-3,1}(N)\)

Return type:

complex

ekore.harmonics.w4.Sm22(N, S1, S2, Sm2, Sm31, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-2,2}(N)\).

As implemented in B.5.94 of [Mus17] and 24 of cite:Bl_mlein_2000.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • Sm2 (complex) – Harmonic sum \(S_{-2}(N)\)

  • Sm31 (complex) – Harmonic sum \(S_{-3,1}(N)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm22 – Harmonic sum \(S_{-2,2}(N)\)

Return type:

complex

ekore.harmonics.w4.Sm211(N, S1, S2, Sm1, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-2,1,1}(N)\).

As implemented in B.5.104 of [Mus17] and 27 of cite:Bl_mlein_2000.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • Sm1 (complex) – Harmonic sum \(S_{-1}(N)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm221 – Harmonic sum \(S_{-2,1,1}(N)\)

Return type:

complex

ekore.harmonics.w4.S211(N, S1, S2, S3)[source]

Analytic continuation of harmonic sum \(S_{2,1,1}(N)\).

As implemented in B.5.115 of [Mus17] and 40 of cite:Bl_mlein_2000.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

Returns:

S211 – Harmonic sum \(S_{2,1,1}(N)\)

Return type:

complex

ekore.harmonics.w4.S31(N, S1, S2, S3, S4)[source]

Analytic continuation of harmonic sum \(S_{3,1}(N)\).

As implemented in B.5.99 of [Mus17] and 41 of cite:Bl_mlein_2000.

Parameters:
  • N (complex) – Mellin moment

  • S1 (complex) – Harmonic sum \(S_{1}(N)\)

  • S2 (complex) – Harmonic sum \(S_{2}(N)\)

  • S3 (complex) – Harmonic sum \(S_{3}(N)\)

  • S4 (complex) – Harmonic sum \(S_{4}(N)\)

Returns:

S31 – Harmonic sum \(S_{3,1}(N)\)

Return type:

complex

ekore.harmonics.w5 module

Weight 5 harmonic sums.

ekore.harmonics.w5.S5(N)[source]

Compute the harmonic sum \(S_5(N)\).

\[S_5(N) = \sum\limits_{j=1}^N \frac 1 {j^5} = \frac 1 24 \psi_4(N+1)+\zeta(5)\]

with \(\psi_4(N)\) the 4th-polygamma function and \(\zeta\) the Riemann zeta function.

Parameters:

N (complex) – Mellin moment

Returns:

S_5 – Harmonic sum \(S_5(N)\)

Return type:

complex

ekore.harmonics.w5.Sm5(N, hS5, hS5mh, hS5h, is_singlet=None)[source]

Analytic continuation of harmonic sum \(S_{-5}(N)\).

\[S_{-5}(N) = \sum\limits_{j=1}^N \frac {(-1)^j} {j^5}\]
Parameters:
  • N (complex) – Mellin moment

  • hS5 (complex) – Harmonic sum \(S_{5}(N)\)

  • hS5mh (complex) – Harmonic sum \(S_{5}((N-1)/2)\)

  • hS5h (complex) – Harmonic sum \(S_{5}(N/2)\)

  • is_singlet (bool, None) – symmetry factor: True for singlet like quantities (\(\eta=(-1)^N = 1\)), False for non-singlet like quantities (\(\eta=(-1)^N=-1\))

Returns:

Sm5 – Harmonic sum \(S_{-5}(N)\)

Return type:

complex

See also

eko.harmonic.w5.S5

\(S_5(N)\)